微弧工藝過程對膜基結(jié)合強(qiáng)度的影響
發(fā)布時(shí)間:2024-08-13 11:01:42微弧氧化膜層比常規(guī)涂層擁有更高的膜基結(jié)合強(qiáng)度,因?yàn)槲⒒⊙趸邮窃诮饘倩w表面原位生成并與基體以冶金的方式相結(jié)合,在陶瓷層與金屬基體結(jié)合區(qū)域存在兩相過渡區(qū),兩種膜層的結(jié)合強(qiáng)度較高,尤其是受到外力沖擊下不易脫落,作為功能涂層及輕合金復(fù)合膜層的打底層具有顯著優(yōu)勢。但在制備微弧氧化陶瓷層的過程中,不同工藝條件下的膜基結(jié)合界面特性會有較大的差異,放電強(qiáng)度、電解液配比及添加劑、電參數(shù)的改變都會對膜層與基體的結(jié)合強(qiáng)度產(chǎn)生影響。不同金屬基體表面微弧氧化涂層的結(jié)合強(qiáng)度如表 1 所示。
(1) 火花放電強(qiáng)度對膜基結(jié)合強(qiáng)度影響
高電壓、大電流導(dǎo)致微弧氧化火花放電強(qiáng)度增大,此時(shí)涂層生長速率較高,涂層厚度增大。但大電流下產(chǎn)生劇烈火花放電現(xiàn)象,會導(dǎo)致陶瓷層表面的放電通道增大,熔融態(tài)金屬氧化物由通道內(nèi)噴濺出,經(jīng)電解液冷卻最終形成“火山口”形狀的多孔形貌,大電流會增加陶瓷層表面的粗糙度及微孔尺寸,降低陶瓷層組織的致密度,進(jìn)而降低涂層的膜基結(jié)合強(qiáng)度。通常情況下,涂層的厚度增加,致密度下降,導(dǎo)致膜基結(jié)合強(qiáng)度降低。
(2) 電參數(shù)對陶瓷層與基體結(jié)合強(qiáng)度的影響
Tang 等研究了占空比對 AZ31B 鎂合金微弧氧化涂層結(jié)合強(qiáng)度的影響,隨占空比的增加,涂層厚度降低,剪切強(qiáng)度增加,占空比為 40% 時(shí),最大結(jié)合強(qiáng)度為24.5 MPa。HAN J 等通過調(diào)控時(shí)間,在鈦合金表面獲得黑色和白色陶瓷涂層,高厚度涂層的結(jié)合強(qiáng)度明顯降低,有研究者在 Ta 合金表面制備不同厚度微弧氧化涂層,也呈現(xiàn)出類似的結(jié)果。
(3)電解液成分對膜基結(jié)合強(qiáng)度影響
在不同體系的電解液中,電解液成分及添加劑決定了涂層的物相與組織結(jié)構(gòu),從而影響膜基結(jié)合性能。在單一組分的基礎(chǔ)電解液中(如硅酸鈉、磷酸鈉、鋁酸鈉等),陶瓷層物相成分及組織簡單,膜層與基體結(jié)合強(qiáng)度高;而在復(fù)合電解液體系中,膜層生長效率提高,但添加劑的引入可能降低膜層與基體的結(jié)合強(qiáng)度;在功能性無機(jī)鹽(如 FeSO4、NiSO4 等)摻雜改性的復(fù)合電解液體系中,陶瓷層的膜基結(jié)合強(qiáng)度會有所下降;而納米/微米粒子 (石墨烯、碳納米管、SiC、 Al2O3 等) 混合改性的復(fù)合電解液體系,因主要以微弧沉積方式生長涂層,膜基結(jié)合強(qiáng)度亦會降低。王亞明等研究了不同電解液體系下陶瓷膜層的結(jié)合強(qiáng)度,表明在 NaAlO2/Na2CO3 電解液體系中,膜基界面強(qiáng)度最高,剪切強(qiáng)度達(dá) 110 MPa。Yerokhin 等用劃痕法測定了不同電解液中鈦合金微弧氧化膜層的結(jié)合力,發(fā)現(xiàn)在 KAlO2/Na3PO4 電解液中制備的微弧氧化涂層,與基體具有最高的臨界載荷LC2值(96 N)。Tang 等分別探索了電解液改性無機(jī)鹽 (FeSO4 和 NiSO4) 濃度對膜基界面強(qiáng)度的影響,隨著濃度的增加,涂層的厚度增大,結(jié)合強(qiáng)度降低。Lou 等研究了 MoS2 粒子摻雜含量對鎂合金表面微弧氧化涂層的膜基結(jié)合強(qiáng)度影響,隨MoS2粒子的含量增加,涂層的結(jié)合強(qiáng)度降低,當(dāng)納米MoS2質(zhì)量分?jǐn)?shù)為2.5 g/L時(shí),涂層具有致密的結(jié)構(gòu),此時(shí)陶瓷層與基體結(jié)合性能最優(yōu)異。
在微弧氧化工藝中,電參數(shù)、電源模式、電解液及添加劑的配比等因素都會顯著影響膜層的物相成分及組織結(jié)構(gòu),從而改變陶瓷層與基體的結(jié)合強(qiáng)度。因此在微弧氧化工藝開發(fā)過程中,需要結(jié)合基體材質(zhì)及工件的具體服役要求,對以上工藝參數(shù)進(jìn)行調(diào)整并制樣,多次檢測對比后制定適合本產(chǎn)品的最優(yōu)微弧氧化工藝過程。